Structure, function, and mechanism of the phenylacetate pathway hot dog-fold thioesterase PaaI.

نویسندگان

  • Feng Song
  • Zhihao Zhuang
  • Lorenzo Finci
  • Debra Dunaway-Mariano
  • Ryan Kniewel
  • John A Buglino
  • Veronica Solorzano
  • Jin Wu
  • Christopher D Lima
چکیده

The structure and biochemical function of the hot dog-fold thioesterase PaaI operative in the aerobic phenylacetate degradation pathway are examined. PaaI showed modest activity with phenylacetyl-coenzyme A, suggestive of a role in coenzyme A release from this pathway intermediate in the event of limiting downstream pathway enzymes. Minimal activity was observed with aliphatic acyl-coenzyme A thioesters, which ruled out PaaI function in the lower phenylacetate pathway. PaaI was most active with ring-hydroxylated phenylacetyl-coenzyme A thioesters. The x-ray crystal structure of the Escherichia coli thioesterase is reported and analyzed to define the structural basis of substrate recognition and catalysis. The contributions of catalytic and substrate binding residues, thus, identified were examined through steady-state kinetic analysis of site-directed mutant proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro kinetic analysis of substrate specificity in enterobactin biosynthetic lower pathway enzymes provides insight into the biochemical function of the hot dog-fold thioesterase EntH.

The Escherichia coli siderophore enterobactin is assembled from 2,3-dihydroxybenzoate (2,3-DHB) and l-serine by the nonribosomal peptide synthetases EntB and EntF. The processive thiol-template strategy used can be sabotaged by EntB misacylation. Through in vitro kinetic analysis, we demonstrate two potential routes to EntB misacylation and provide evidence for two mechanisms by which the hot d...

متن کامل

Crystal structure of human thioesterase superfamily member 2 q , qq

Hotdog-fold has been identified in more than 1000 proteins, yet many of which in eukaryotes are less studied. No structural or functional studies of human thioesterase superfamily member 2 (hTHEM2) have been reported before. Since hTHEM2 exhibits about 20% sequence identity to Escherichia coli PaaI protein, it was proposed to be a thioesterase with a hotdog-fold. Here, we report the crystallogr...

متن کامل

The structure of 4-hydroxybenzoyl-CoA thioesterase from arthrobacter sp. strain SU.

The 4-chlorobenzoyl-CoA dehalogenation pathway in certain Arthrobacter and Pseudomonas bacterial species contains three enzymes: a ligase, a dehalogenase, and a thioesterase. Here we describe the high resolution x-ray crystallographic structure of the 4-hydroxybenzoyl-CoA thioesterase from Arthrobacter sp. strain SU. The tetrameric enzyme is a dimer of dimers with each subunit adopting the so-c...

متن کامل

X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase.

The metabolic pathway by which 4-chlorobenzoate is degraded to 4-hydroxybenzoate in the soil-dwelling microbe Pseudomonas sp. strain CBS-3 consists of three enzymes including 4-hydroxybenzoyl-CoA thioesterase. The structure of the unbound form of this thioesterase has been shown to contain the so-called "hot dog" fold with a large helix packed against a five-stranded anti-parallel beta-sheet. T...

متن کامل

Ligand-induced conformational changes within a hexameric Acyl-CoA thioesterase.

Acyl-coenzyme A (acyl-CoA) thioesterases play a crucial role in the metabolism of activated fatty acids, coenzyme A, and other metabolic precursor molecules including arachidonic acid and palmitic acid. These enzymes hydrolyze coenzyme A from acyl-CoA esters to mediate a range of cellular functions including β-oxidation, lipid biosynthesis, and signal transduction. Here, we present the crystal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 16  شماره 

صفحات  -

تاریخ انتشار 2006